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Abstract

Steady two!dimensional convective motions generated in a shallow cavity by uniformly distributed internal heat
sources are analysed for the case where the vertical end walls are isothermal and the horizontal boundaries are adiabatic[
Rayleigh numbers are considered for which the ~ow and temperature _elds in the cavity are in~uenced by nonlinear
e}ects[ Solutions are obtained using the method of matched asymptotic expansions[ Þ 0887 Elsevier Science Ltd[ All
rights reserved[

Nomenclature

cp speci_c heat at constant pressure
F core stream function pro_le
` acceleration due to gravity
G core temperature pro_le
h cavity height
L cavity aspect ratio
R Rayleigh number
R0\ R
 scaled Rayleigh numbers
T non!dimensional temperature
T	\ T
 scaled end!region temperatures
x\ z non!dimensional coordinates[

Greek symbols
b volumetric expansion coe.cient
k thermal di}usivity
n kinematic viscosity
j scaled horizontal coordinate
r mean density
s Prandtl number
S volumetric heat generation rate
c non!dimensional stream function
c½ \ c¼ scaled end!region stream functions[

0[ Introduction

Motions driven by internal heat generation arise in a
variety of technological applications and are of interest\

� Corresponding author[ E!mail ] p[g[danielsÝcity[ac[uk

for example\ to the chemical and nuclear industries ð0\ 1Ł
as well as in connection with related ~ows arising in the
production of crystals by the Czochralski method ð2Ł[
There are also a variety of applications in geophysics\
ranging from convection in the interior of the Earth to
the motion of lakes\ reservoirs and oceans and the
dynamics of the atmosphere\ see for example ð3Ł[ In many
of these applications the ~ow takes place within a region
of large horizontal extent and a simpli_ed model of the
physical processes can be considered to consist of a two!
dimensional rectangular cavity of large aspect ratio L
"width:height#[ Much of the previous theoretical\ numeri!
cal and experimental work for such geometries ð4Ð00Ł
relates to cases where at least one of the horizontal sur!
faces is isothermal and there is an unstable strati_cation
which at su.ciently high Rayleigh numbers supports
multicellular convection[

In the present paper the steady ~ow produced by a
uniform distribution of heat sources is studied for the case
where the vertical walls are isothermal and the horizontal
boundaries are adiabatic[ In this case the vertical end
walls of the cavity generally play a signi_cant role[
Bergholz ð01Ł considered the high Rayleigh number limit
for a cavity of _nite aspect ratio\ where the ~ow is con!
trolled by the boundary layers on the vertical walls[ A
modi_ed Oseen method of the type developed by Gill
ð02Ł was used to obtain approximate solutions[ Further
results for the boundary!layer regime in the large Prandtl
number limit have been obtained by Blythe et al[ ð03Ł and
Daniels et al[ ð04Ł using both an integral technique and a
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numerical solution of the vertical boundary!layer equa!
tions\ and these methods have also been applied to the
corresponding problem for a porous medium by Blythe
et al[ ð05Ł[ Experimental investigations and numerical
solutions of the overall cavity ~ow for a range of Rayleigh
numbers\ Prandtl numbers and aspect ratios have been
reported by Smith and Hammitt ð06Ł\ Richards ð07Ł and
Kulacki and Richards ð08Ł[ Most of the experimental
work relates to moderate aspect ratios\ that in ð06Ł being
for L � 0

2
and in ð07Ł for L � 0 and L � 1\ with Prandtl

numbers in the range 3[3Ð6[4 and internal heating pro!
duced by ohmic resistance in the ~uid[ Numerical simu!
lations reported in ð07Ł cover aspect ratios in the range
0
1
¾ L ¾ 3 for a Prandtl number of 5[4[
The main feature of the ~ow with isothermal end walls

and adiabatic horizontal boundaries is a symmetric
double!cell circulation with ~uid ascending in the centre
of the cavity and descending near the end walls[ In the
convection!dominated boundary!layer regime referred to
above\ the core ~ow is vertically strati_ed\ whereas for
su.ciently low Rayleigh numbers it can be expected that
lateral conduction will dominate\ leading to a horizontal
strati_cation[ As the Rayleigh number increases\ non!
linear convective e}ects become important and modify
this strati_cation\ leading to a family of di}erent ~ow
patterns and temperature _elds[ For shallow cavities this
family can be determined analytically[ The problem is
formulated in Section 1 and the critical range of Rayleigh
numbers is identi_ed\ leading to an asymptotic expansion
of the solution which is presented in Section 2[ This
expansion is found to be valid throughout most of the
cavity "or core region# but near the vertical end walls
must be replaced by local expansions which describe the
turning motion there[ These end regions are considered
in Section 3 and the local solution of the nonlinear gov!
erning equations\ which draws on previous results for
laterally heated cavities ð19Ł leads to the completion of
the core solution to the second level of approximation[
The main properties of the thermal and ~ow _elds in the
core are described in Section 4 and the results are dis!
cussed in Section 5[

1[ Formulation

For steady\ two!dimensional motion subject to the
OberbeckÐBoussinesq approximation\ the vorticity and
energy equations can be written in dimensionless form as

93c � s−0 1"91c\ c#
1"x\ z#

¦R
1T
1x

"1[0#

91T¦0 �
1"T\ c#
1"x\ z#

[ "1[1#

Here

s � n:k "1[2#

is the Prandtl number of the ~uid\ where n is the kinematic
viscosity and k is the thermal di}usivity and

R �
`bSh4

rcpnk
1

"1[3#

is the Rayleigh number based on the cavity height h\ the
constant volumetric heat generation rate S\ the accel!
eration due to gravity `\ the volumetric expansion
coe.cient b\ the mean density r and the speci_c heat at
constant pressure cp[ In "1[0# and "1[1# the coordinates
"x\ z#\ stream function c and temperature T are non!
dimensionalized with respect to h\ k and h1S:rcpk\ respec!
tively[

The boundary conditions at the rigid horizontal sur!
faces are

c �
1c

1z
�

1T
1z

� 9 on z �2
0
1

"1[4#

and at the vertical end walls

c �
1c

1x
� T � 9 on x � 9\ L "1[5#

where L is the aspect ratio of the cavity\ which is assumed
to be large[

It can be expected that solutions of "1[0#\ "1[1#\ "1[4#
and "1[5# exist satisfying the symmetry relations

c"x\ z# � −c"L−x\ z#\ T"x\ z# � T"L−x\ z#[ "1[6#

For su.ciently small Rayleigh numbers\ the tem!
perature _eld is dominated by conduction associated with
the left!hand side of the energy equation "1[1#\ and the
relevant solution which satis_es the thermal boundary
conditions is

T � 0
1
x"L−x#[ "1[7#

It is of interest to consider how large the Rayleigh number
must be for this quadratic form to be modi_ed by the
e}ects of convection[ The ~ow generated in the cavity by
the buoyancy term in "1[0# has a stream function of
order RL and from "1[1# this in turn generates a vertical
temperature variation of order RL1[ Integration of "1[1#
and use of the boundary conditions at z � −0

1
and z � 0

1

gives

g
0:1

−0:1

11T

1x1
dz¦0 � −g

0:1

−0:1

1

1x 0c
1T
1z1 dz "1[8#

and from the above argument it follows that the right!
hand side is of order R1L1[ Thus\ the result "1[7# will no
longer hold when R is of order L−0 and the present work
is concerned with a description of ~ows for which the
scaled Rayleigh number

R0 � RL "1[09#

is of order one as L : �[
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2[ Core region

Throughout most of the cavity the solution depends
on length scales

j � x:L\ z � z "2[0#

and the stream function and temperature _elds can be
expanded in the form

c � c9"j\ z#¦L−0c0"j\ z#¦L−1c1"j\ z#¦= = = "2[1#

T � L1T9"j\ z#¦LT0"j\ z#¦T1"j\ z#¦L−0T2"j\ z#¦= = =

"2[2#

as L : �[ These forms are now substituted into the gov!
erning equations "1[0#\ "1[1# and boundary conditions
"1[4# to obtain a succession of problems as follows[ From
"1[1# at order L1\

11T9

1z1
� 9 "2[3#

and the solution satisfying the adiabatic conditions
1T9:1z � 9 at z �20

1
is

T9 � u9"j# "2[4#

where u9 is an arbitrary function of j[ From "1[0# at order
one\

13c9

1z3
� R0

1T9

1j
"2[5#

and the solution for c9 satisfying the boundary conditions
c9 � 1c9:1z � 9 at z �20

1
is

c9 � R0u?9F"z# "2[6#

where

F"z# �
0
13 0

0
3

−z11
1

[ "2[7#

From "1[1# at order L\

11T0

1z1
�

1T9

1j

1c9

1z
"2[8#

and the solution satisfying the conditions 1T0:1z � 9 at
z �20

1
is

T0 � R0u?9G"z#¦u0"j# "2[09#

where it is convenient to choose the form of G which is
an odd function of z\ so that

G"z# �
0
13 0

z4

4
−

z2

5
¦

z
051 "2[00#

and u0 is an arbitrary function of j[ From "1[0# at order
L−0\

13c0

1z3
�

0
s 0

12c9

1z1 1j

1c9

1z
−

12c9

1z2

1c9

1j 1¦R0

1T0

1j
"2[01#

and the solution which satis_es the conditions
c0 � 1c0:1z � 9 at z �20

1
is

c0 � R1
0u?9uý9"G0"z#¦s−0F0"z##¦R0u?0F"z# "2[02#

where G0 and F0 are odd functions of z de_ned by

G0 �
0
61 6

z8

1419
−

z6

739
¦

z4

219
−

00z2

7953
¦

z
50337 "2[03#

F0 �
0

2345 6
z8

10
−

z6

24
−

z4

39
¦

4z2

225
−

06z
78597[ "2[04#

From "1[1# at order one\

11T1

1z1
� −0−

11T9

1j1
¦

1T0

1j

1c9

1z
¦

1T9

1j

1c0

1z
−

1T0

1z
1c9

1j
[

"2[05#

Integration in z and use of the boundary conditions
1T1:1z � 9 at z �20

1
shows that this equation has a

consistent solution only if u9 satis_es the equation

uý9¦aR1
0u?9

1uý9¦0 � 9 "2[06#

where

a � 2 g
0:1

−0:1

F1 dz � 0:019859[ "2[07#

The second term in "2[06# represents the e}ect of con!
vection on the core temperature _eld which must now be
found by solving the nonlinear equation "2[06# subject to
the end conditions

u9 � 9 at j � 9\ 0[ "2[08#

These conditions are needed to ensure that the thermal
boundary conditions on the end walls of the cavity are
satis_ed^ the solution near the ends is considered sep!
arately in Section 3 below[ Once u9 is found from "2[06#
and "2[08#\ the leading order core ~ow _eld is determined
from "2[6#[ Solutions for u9 are described in Section 4[

The core solution is now continued one stage further
in order to determine the unknown function u0"j# which
arises in the solution for T0[ The solution of "2[05# for T1

can be expressed in the form

T1 � −
0
1

z1"0¦uý9#¦R1
0u?9

1uý9 g
z

9 g
z

9

"1GF?−F1# dz dz

¦u?9 g
z

9

c0 dz¦u?0 g
z

9

c9 dz¦u1"j# "2[19#

where u1 is an arbitrary function of j[ An expression for
11T2:1z1 can be obtained from terms of order L−0 in "1[1#
and integration in z and use of the boundary conditions
1T2:1z � 9 and c1 � 9 at z �20

1
yields

g
0:1

−0:1

11T0

1j1
dz � g

0:1

−0:1 6
1T1

1j

1c9

1z
¦

1T0

1j

1c0

1z

−
1T1

1z
1c9

1j
−

1T0

1z
1c0

1j 7 dz[ "2[10#

Contributions to these integrals arise only from those
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parts of the integrands which are even in z\ leading to the
result

uý0 � −aR1
0u?9"1uý9u?0¦u?9uý0#[ "2[11#

This equation can be integrated once to obtain

u?0 � a0"0¦aR1
0u?19#−0 "2[12#

where a0 is a constant of integration\ but the symmetry
relations "1[6# imply that a0 � 9[ Hence

u0 � C "2[13#

where C is a constant[
In summary\ the core solution has been obtained in

the form

T � L1u9"j#¦L"R0u?19G"z#¦C#¦O"0#

c � R0u?9F"z#¦L−0"R1
0u?9uý9"G0"z#¦s−0F0"z###

¦O"L−1#

J

f

F

j

"2[14#

as L : �\ where C is a constant to be determined[ Since
it cannot be expected that u?9 vanishes at j � 9 and j � 0\
it is clear that the solution "2[14# does not satisfy the
boundary conditions "1[5# on the end walls of the cavity[
The necessary adjustment occurs in roughly square end
regions which accommodate the turning motion of the
~uid and serve to determine the value of C[ These are
considered next[

3[ End regions

Because of the symmetry properties "1[6# it is only
necessary to consider the solution near one end of the
cavity[ It is envisaged that u?9"9# × 9 so that as j : 9\ the
core solution "2[14# has the form

T ½ L1bj¦L"R0b
1G"z#¦C#\ c ½ R0bF"z# "3[0#

where b � u?9"9#[ This suggests that in the end region near
x � 9 where x and z are of order one\ the solution can be
expanded in the form

T � LT	"x\ z#¦= = =\ c � c½ "x\ z#¦= = = "3[1#

as L : �[ Substitution into "1[0# and "1[1# shows that T	
and c½ satisfy the equations

93c½ �
0
s

1"91c½ \ c½ #
1"x\ z#

¦R0

1T	
1x

"3[2#

91T	 �
1"T	\ c½ #
1"x\ z#

"3[3#

and from "1[4# and "1[5# it is required that

c½ �
1c½

1z
�

1T	
1z

� 9 on z �2
0
1

"3[4#

and

c½ �
1c½

1x
� T	 � 9 on x � 9[ "3[5#

In addition the solution must match with that given by
"3[0# as x : �\ requiring that

T	 ½ bx¦R0b
1G"z#¦c\ c½ ½ R0bF"z#\ x : � "3[6#

where C � c[ It should be noted that "3[2# and "3[3#
constitute the full nonlinear Boussinesq system except
that the heat source term is too small to contribute\ the
~ow being driven by the thermal gradient and recir!
culating ~ow set up in the core[ In fact the parameter b
can be replaced by unity in the system "3[2#Ð"3[6# through
the scale transformations

T	 � bT
"x\ z#\ c½ � c¼ "x\ z#\ R0 � R
b−0 "3[7#

in which case the system for c¼ \ T
\ R
 is identical to that
which arises in the end zone of a laterally heated cavity\
for which

T
 ½ x¦R
G"z#¦c¼\ x : � "3[8#

and numerical solutions have been obtained using a _nite
di}erence method by Wang and Daniels ð19Ł[ Values of
the parameter c¼ � c¼"R
\ s# have been obtained for
s � 9[60 and a wide range of values of R
\ and the stream!
line and isotherm patterns reported there are directly
relevant to the present problem through the trans!
formations "3[7#[ In particular\ the constant C in the core
solution "3[0# is determined as

C � bc¼"bR0\ s#[ "3[09#

The form of c¼ has been found by Cormack et al[ ð10Ł in
the limit as R
 : 9 through a combination of analytical
and numerical techniques\ the ~ow in the end zone in this
limit being equivalent to a Stokes ~ow driven by the
uniform gradient T
 � x[ The core solution has the prop!
erty that b � u?9"9# : 0

1
as R0 : 9 "to be con_rmed below#

in which case their results carry over to the present prob!
lem and it follows from "3[09# that

C ½ 1[1×09−6R1
0\ R0 : 9 "3[00#

for general values of s[ In general\ the parameter b is a
function of R0 which must be found by solving the core
problem "2[06#\ "2[08# ^ this is undertaken next[

4[ Core solution

Equation "2[06# can be integrated once and the sym!
metry of the solution used to obtain

u?9 � a−0:1R−0
0 "F¦"j#¦F−"j## "4[0#

where

F2"j# � "2
1
a0:1R0"0

1
−j#2"0¦8

3
aR1

0"j−0
1
#1#0:1#0:2[

"4[1#

One further integration making use of the substitution

y � sinh−0"2
1
a0:1R0"j−0

1
## "4[2#
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and the boundary conditions "2[08# gives the core tem!
perature _eld

u9 � a−0R−1
0 "cosh 1

2
y−0

1
cosh 3

2
y−cosh 1

2
y9¦

0
1
cosh 3

2
y9#

"4[3#

where y9 � sinh−0 " 2
3
a0:1R0#[ From "2[6# the core stream

function is given by

c9 � −1a−0:1F"z# sinh 0
2
y "4[4#

and the vertical velocity in the core is

w9"j\ z# � −1c9:1j �
R0F"z#

0¦aR1
0u9?

1
�

R0F"z#

0¦3 sinh1 0
2
y

[

"4[5#

Note that at the centre of the cavity\ where u?9 � 9\ w9 is
an exact linear function of R0\ being given by
w9"0

1
\ 9# � R0:273[ Pro_les of u9\ c9 and w9 are shown in

Figs 0Ð2\ and Fig[ 3 summarizes the variation of the main
properties of the solution with R0[

At small values of R0 the solution is dominated by
conduction\ with

u9 ½ 0
1
j"0−j#¦ 0

01
aR1

0""j−0
1
#3− 0

05
#¦= = =

c9 ½ "R0"0
1
−j#¦0

2
aR2

0"j−0
1
#2¦= = =#F"z#9 "R0 : 9#

"4[6#

while for large values of R0 the main balance is between
convection and the internal heat source\ with

Fig[ 0[ Pro_les of the core temperature _eld u9 for various values of R0[

u9 ½ 23:2a−0:2R−1:2
0

0
3
""0

1
#3:2−"j−0

1
#3:2#

c9 ½ 20:2a−0:2R0:2
0 "0

1
−j#0:2F"z# 9 "R0 : �#

"4[7#

for 9 ³ =j−0
1
= ¾ 0

1
[ These forms are singular as j : 0

1
2

and near the centre of the cavity there is a local smoothing
of the solution on an inner length scale j−0

1
� O"R−0

0 #
where conduction remains signi_cant[ Here y � O"0# and
the full versions of the expressions "4[3# and "4[4# deter!
mine the variation of the order R−1

0 and order one com!
ponents of the local temperature and stream function
_elds\ respectively[

5[ Discussion

A self!consistent asymptotic description of the steady!
state ~ow generated in a shallow two!dimensional cavity
by uniform internal heating has been obtained for Ray!
leigh numbers R of order L−0[ It has been shown that in
this range the ~ow and temperature _elds in the cavity
are in~uenced by convective e}ects leading to changes in
the shape and speed of the main double!cell circulation[
Figure 4 shows the core streamlines obtained from "4[4#
for various values of R0 � RL[ At small values of R0 the
~ow is dominated by conduction and the speed of the
upward motion in the double cell is virtually independent
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Fig[ 1[ Pro_les of the core stream function _eld c9 at mid!cavity height\ z � 9\ for various values of R0[

Fig[ 2[ Pro_les of the core vertical velocity w9 at mid!cavity height\ z � 9\ for various values of R0[

of the lateral direction[ Only near the ends of the cavity
is there a signi_cant change\ and the two circulations are
completed by downward motion within the end regions
identi_ed in Section 3[ As R0 increases and convection
becomes more important the upward motion in the
double cell becomes signi_cantly stronger towards the

centre of the cavity "Fig[ 2#\ remaining relatively weak
near the two ends[ Eventually the motion at the centre
leads to a new local structure there\ when R is of order
one[ At this point the inner region identi_ed at the
end of Section 4 has width comparable to the height
of the cavity and the local order one variations in c
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Fig[ 3[ Variation of the main properties of the core solution with R0\ showing "a# the temperature u9 at j � 0

1
\ "b# the temperature

gradient b � du9:dj at j � 9\ "c# the vertical velocity w9 at j � 9\ z � 9 and "d# the vertical velocity w9 at j � 0

1
\ z � 9[ Asymptotic

results obtained from "4[6# and "4[7# are shown by broken lines[

and T ðrelative to the constant temperature
0
3
"2
1
#3:2a−0:2R−1:2L3:2 implied by "4[7#Ł are governed by

the full nonlinear system "1[0#\ "1[1#[ A proper treatment
of the mathematical problem associated with this central
plume will require a signi_cant numerical investigation\
which it is hoped to pursue in the near future[

In contrast\ the end region ~ows relevant in the present
regime where R0 � O"0# have already received signi_cant
attention and are nonlinear throughout the range
9 ³ R
 ³ � studied by Wang and Daniels ð19Ł[ Here R0

and R
 are related by R0 � R
:b\ with the parameter b
determined from the core solution "4[0# as

b � u?9"9# � 1a−0:1R−0
0 sinh 0

2
y9 "5[0#

and shown as a function of R0 in Fig[ 3[ Since

b : 0
1
\ R0 : 9

b ½ "2
1
#0:2 a−0:2R−1:2

0 \ R0 : �7 "5[1#

it follows that

R0 ½ 1R
\ R
 : 9

R0 ½ 1
2
aR
2\ R
 : �7 "5[2#

so that the family of end!region ~ows relevant here over
the range 9³ R0 ³ � correspond to the full range of
solutions 9 ³ R
 ³ � studied in ð19Ł[ These turning ~ows
become quite complicated at high values of R
\ with the

formation of thin layers around the side and bottom walls
and a complex eddy structure in the lower corner[ At
small Prandtl numbers and su.ciently high Rayleigh
numbers the end!zone ~ow is also subject to multiple!cell
instability of the type _rst analysed by Hart ð11\ 12Ł in
the context of laterally heated cavities[ Similar insta!
bilities can therefore be expected to arise in the present
internally!heated ~ow although it is not clear to what
extent any instability will prevail throughout the cavity\
given that away from the ends the core ~ow here is sig!
ni_cantly di}erent from the parallel ~ow of the laterally
heated case[ It is hoped to investigate the stability proper!
ties of the internally!heated system in future work\ and it
is also hoped to extend the present analysis to the case of
a stress!free upper surface\ of relevance in geophysical
applications[ The present approach is also applicable in
the case of a porous medium and a parallel investigation
of that problem is reported elsewhere ð13Ł[

Heat transfer properties of the system should also be
mentioned[ An average Nusselt number for the system
based on the heat transfer through the end wall at x � 9
relative to the maximum temperature di}erence in the
cavity "measured by the temperature at x � 0

1
L\ z � 0

1
#

can be de_ned as

Nu �
0

T"0
1
L\ 0

1
# g

0:1

−0:1

1T
1x

"9\ z# dz[ "5[3#
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Fig[ 4[ Core streamlines obtained from "4[4# for various values of R0 and shown for the case where the aspect ratio L � 4[

However\ it follows from integration of "1[8# with respect
to x and use of the symmetry properties of the ~ow that

g
0:1

−0:1

1T
1x

"9\ z# dz � x¦g
0:1

−0:1 0
1T
1x

−T
1c

1z1 dz �
0
1

L[

"5[4#

This result expresses the fact that the total heat transfer
through each end wall is precisely half that produced by
the internal heat sources distributed over the total area
L of the cavity[ It can readily be con_rmed that for the
core solution "2[1#\ "2[2# the central expression in "5[4# is
indeed constant and equal to 0

1
L\ to the level of approxi!
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mation calculated in Section 2[ It follows from "5[4# that
for order one values of R0\

Nu � L:"1T"0
1
L\ 0

1
## ½ 0:"1Lu9"0

1
##\ L : � "5[5#

where u9"0
1
# is sketched as a function of R0 in Fig[ 3[ Of

course the local distribution of heat transfer along the
end wall must be obtained from the solution of the end
region problem of Section 3[ The results given for a range
of Rayleigh numbers and several di}erent Prandtl num!
bers in ð19Ł show that most of the outward transfer of
heat occurs through the upper half of the end wall where
the relatively high temperature of the ~uid arriving from
the centre of the cavity must undergo a rapid adjustment[

The present theory is valid for large aspect ratios\
L Ł 0\ and formally speaking\ for Rayleigh numbers
R0 ð L[ In practice the central plume mentioned earlier
will emerge on a lateral scale x ½ 0\ comparable with
the height of the cavity\ when from "4[2#\
R0 ½ 1

2
a−0:1L ¼ 121L[ This gives a rough indication of

the upper limit of validity of the present theory\ for the
region near the centre of the cavity[ A comparison with
the experimental observations reported in ð06Ł and ð07Ł
is not appropriate because the aspect ratios considered
there are no larger than 1[ However\ a numerical simu!
lation reported in ð07Ł for L � 3\ s � 5[4 and a Rayleigh
number equivalent here to R0 � 670[14 should be in
reasonable agreement and\ indeed\ the value of the
Nusselt number found there\ Nu ¼ 0[94\ is within 7) of
the value 0[03 predicted by "5[5#[ The next correction to
the asymptotic result "5[5# implied by "2[14#\
−0

1
L−1C:"u9"0

1
##1\ is of the right sign to produce even

closer agreement[ It is hoped that further experimental
and numerical work will eventually allow a more detailed
comparison with the present theory[
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